
ARTICLE in ENVIRONMENTAL SCIENCE & TECHNOLOGY · SEPTEMBER 2011
Impact Factor: 5.33 · DOI: 10.1021/es2022347 · Source: PubMed

6 AUTHORS, INCLUDING:

Shuxiao Wang
Tsinghua University
145 PUBLICATIONS 2,778 CITATIONS

Jia Xing
United States Environmental Protection Age…
39 PUBLICATIONS 836 CITATIONS

Joshua S Fu
University of Tennessee
162 PUBLICATIONS 2,249 CITATIONS

Available from: Joshua S Fu
Retrieved on: 29 March 2016
IMPACT ASSESSMENT OF AMMONIA EMISSIONS ON INORGANIC AEROSOLS IN EAST CHINA USING RESPONSE SURFACE MODELING TECHNIQUE

Shuxiao Wang,*† Jia Xing,† Carey Jang,‡ Yun Zhu,§ Joshua S. Fu,‖ and Jiming Hao†

†School of Environment, and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
‡U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
§School of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
‖Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States

Supporting Information

ABSTRACT: Ammonia (NH₃) is an important precursor of inorganic fine particles; however, knowledge of the impacts of NH₃ emissions on aerosol formation in China is very limited. In this study, we have developed China’s NH₃ emission inventory for 2005 and applied the Response Surface Modeling (RSM) technique upon a widely used regional air quality model, the Community Multi-Scale Air Quality Model (CMAQ). The purpose was to analyze the impacts of NH₃ emissions on fine particles for January, April, July, and October over east China, especially those most developed regions including the North China Plain (NCP), Yangtze River delta (YRD), and the Pearl River delta (PRD). The results indicate that NH₃ emissions contribute to 8–11% of PM₂.₅ concentrations in these three regions, comparable with the contributions of SO₂ (9–11%) and NOₓ (5–11%) emissions. However, NH₃, SO₂, and NOₓ emissions present significant nonlinear impacts; the PM₂.₅ responses to their emissions increase when more control efforts are taken mainly because of the transition between NH₃-rich and NH₃-poor conditions. Nitrate aerosol (NO₃⁻) concentration is more sensitive to NOₓ emissions in NCP and YRD because of the abundant NH₃ emissions in the two regions, but it is equally or even more sensitive to NH₃ emissions in the PRD. In high NO₃⁻ pollution areas such as NCP and YRD, NH₃ is sufficiently abundant to neutralize extra nitric acid produced by an additional 25% of NOₓ emissions. The 90% increase of NH₃ emissions during 1990–2005 resulted in about 50–60% increases of NO₃⁻ and SO₄²⁻ aerosol concentrations. If no control measures are taken for NH₃ emissions, NO₃⁻ will be further enhanced in the future. Control of NH₃ emissions in winter, spring, and fall will benefit PM₂.₅ reduction for most regions. However, to improve regional air quality and avoid exacerbating the acidity of aerosols, a more effective pathway is to adopt a multipollutant strategy to control NH₃ emissions in parallel with current SO₂ and NOₓ controls in China.
control of individual pollutants. Pinder et al.6 conducted a series of PMCAMx simulations to estimate the cost-effectiveness and uncertainty of NH3 emission reductions on inorganic aerosols in the eastern United States and found that many currently available NH3 control technologies were cost-effective compared to SO2 and NOx.

China, as the most populated country in the world, has significant agricultural activities which release large amounts of NH3 to the atmosphere. Enhanced concentrations of NH3 over the Beijing area in northeast China have been first detected in space-based nadir viewing measurements that penetrate into the lower atmosphere.10 The North China Plain (NCP), as shown in Figure 1, is one of the areas with the highest NH3 column density retrieved from infrared satellite observations.11 National NH3 emissions in China are estimated to be 12–14 Tg for year 2000 and 13–16 Tg for year 2005,12–14 and account for 30–55% of total Asia NH3 emissions.12,15,16 SO2 emissions have become better controlled in China.17 National emissions of SO2 were required by the government to be reduced 10% by 2010 compared to the level in 2005. However, such reduction of SO2 may adversely affect PM2.5, because it will lead to an increase in aerosol nitrate in the regions where air quality is more acidic.5,18,19 Additionally, in terms of acidification effects, Zhao et al.20 indicated that the benefits of SO2 reductions by 10% in China during 2005 to 2010 would almost be negated by the increase of NOx and NH3 emissions. Xing et al.18 suggested NH3 emission control should be considered to reduce the total nitrogen deposition in the future.

Undoubtedly, NH3 is one of the most important pollutants which should receive attention; however, modeling studies to understand the impacts of NH3 emission on fine particles in China are quite limited. In this paper, we conducted 3-D air quality simulations in conjunction with the Response Surface Modeling (RSM) technique to investigate sensitivities of the PM components to changes of their precursor emissions, including SO2, NOx, NH3, NMVOC, and primary particles, in east China. Nonlinear impacts of NH3 emissions on SIA have been evaluated, and a more effective NH3 emission control pathway is recommended.

METHODOLOGY

The processes involved are the establishment of emission inventories, selection of air quality modeling domain and configuration, development, and validation of the emission control/air quality response prediction using RSM methodology.

Emission Inventory. Emissions of SO2, NOx, PM10, PM2.5, black carbon (BC), organic carbon (OC), NH3, and NMVOC were calculated based on the framework of the GAINS-Asia model.21 The general method and some improvements used to develop the China regional emission inventory are described in our previous papers.22

In 2005, NH3 emissions from livestock farming, N-fertilizer application, N-fertilizer production, and human excreta are estimated to be 7.16, 8.35, 0.17, and 0.87 Tg, respectively. The first two are the most important NH3 contributors; they account for 43% and 50% of total emissions, respectively. Urea, ammonium bicarbonate (ABC), and other fertilizers account for 56%, 22%, and 22% of the N-fertilizer used in China. The consumption of N-fertilizer has been increasing in the past 15 years. In 2010, the consumption of ammonia fertilizer was 26.4% higher than that in 2005. Large variations presented in the geographical distribution are shown in Figure 1. The North China Plain, including Henan, Shandong, Hebei, and Jiangsu Provinces, contribute approximately 33% of national emissions, with an emission intensity as high as 9.0 t km−2, 4 times above the national average level (i.e., 1.7 t km−2). NH3 emissions have strong seasonal variations since the related agricultural activities and emission factors (i.e., N-volatilization rate) are significantly affected by the meteorological conditions.12,14,23,24 Highest NH3 emissions occur during June–August because of more favorable meteorological conditions (i.e., higher temperature) for NH3 volatilization and intensive agricultural activities. In this study, the monthly NH3 emissions in January, April, July, and October are estimated as 2.9%, 4.2%, 18.3%, and 7.5% of annual emissions, respectively.

MMS/CMAQ Modeling. The air quality model used in this study is the Model-3/Community Multiscale Air Quality (CMAQ) modeling system (ver. 4.7), developed by U.S. EPA,25 which has been tested, evaluated, and applied in China.26–31 A one-way nested technique is employed in this study. Modeling domain 1 covers almost all of China with a 36 × 36 km horizontal grid resolution and generates the boundary conditions for nested domain at 12 × 12 km resolution over East China. The three most developed regions, North China Plain (NCP), Yangtze River delta (YRD), and Pearl River delta (PRD), have been chosen as the target areas, as shown in Figure 1 and Table S1. The target period is January, April, July, and October in 2005. A complete description of CMAQ configuration, meteorological, emission, and initial and boundary condition inputs used for this analysis are described in Xing et al.18,33 The Aerosol Optical Depth (AOD), NO2 and SO2 column density, as well as the ground concentrations of SO2, NO2, PM10, PM2.5, and its chemical components simulated by this modeling system have been validated through comparison with observations of satellite retrievals and surface monitoring data.

Response Surface Modeling (RSM) Technique. A real-time emission control/air quality response tool, i.e., RSM, was developed at the U.S. EPA and applied to a number of air quality policy analyses and assessments.26 RSM uses advanced statistical techniques to characterize the relationships between model outputs (i.e., air quality responses) and input parameters (i.e., emission changes) in a highly efficient manner. Table 1 gives the sampling method and numbers of simulations used in this RSM application. Following the principle of RSM development as discussed in our previous paper,22 the responses of PM concentrations to

Figure 1. Map of the CMAQ/RSM modeling domain and spatial distributions of NH3 emissions.
Table 1. Sample Methods and Key Parameters Involved during PM RSM Development

<table>
<thead>
<tr>
<th>RSM case</th>
<th>variable number</th>
<th>sample method</th>
<th>sample number</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHS-30-b</td>
<td>total-NOₓ, total-SO₂</td>
<td>Latin hypercube sampling</td>
<td>30</td>
</tr>
<tr>
<td>LHS-30-c</td>
<td>total-NOₓ, total-NH₃</td>
<td>Latin hypercube sampling</td>
<td>30</td>
</tr>
<tr>
<td>LHS-30-d</td>
<td>total-NOₓ, total-NMVOC</td>
<td>Latin hypercube sampling</td>
<td>30</td>
</tr>
<tr>
<td>HSS-100</td>
<td>total-NOₓ, SO₂, NH₃, NMVOC, and PM</td>
<td>Hammersley quasi-random sequence sample</td>
<td>100</td>
</tr>
</tbody>
</table>

the changes of the total emissions of SO₂, NOₓ, NH₃, NMVOC, and PM over east China have been calculated. We define "emission ratios" as the ratio of the changed emissions compared to the baseline emissions. The emissions of each pollutant change from 0 to 200%, which means the emission ratios are from 0 to 2. We used 100 random emission control scenarios generated by Hammersley quasi-random Sequence Sample (HSS) method to establish the emission-based prediction model (HSS-100). In this study, RSM surface (emissions control and corresponding concentration change) prediction system was statistically generalized by MPerK (MATLAB Parametric Empirical Kriging) program followed Maximum Likelihood Estimation—Experimental Best Linear Unbiased Predictors (MLE-EBLUPs). Such control/response prediction system (i.e., HSS-100) has been validated through "leave-one-out cross validation" (LOOCV) and 2-D isopleths validation (see Figures S1 and S2). These results indicate that the HSS-100 predictions have good accuracy compared with CMAQ simulations. The stability of RSM with high dimensions (i.e., HSS-100) has been confirmed through its comparison with the one with low dimensions (i.e., LHS-30).

RESULTS AND DISCUSSION

PM₂.₅ Sensitivity to NH₃ Emissions

Following other sensitivity studies, we defined the PM₂.₅ sensitivity as the change ratio of PM₂.₅ concentration change to the change ratio of emissions, to evaluate the control effects of each pollutant,

\[
S_{a}^{X} = \frac{\Delta C/C_{a}}{\Delta E_{X}/E_{X}} = \frac{(C^{a} - C_{a})/C^{a}}{1 - a}
\]

where \(S_{a}^{X}\) is the PM₂.₅ sensitivity to pollutant \(X\) (i.e., SO₂, NOₓ, NH₃, NMVOC, and PM) at its emission ratio \(a\); \(C_{a}\) is the concentration of PM₂.₅ when the emission ratio of \(X\) is \(a\); \(C^{a}\) is the baseline concentration of PM₂.₅ (when emission ratio of \(X\) is 1).

Figure 2 gives the comparison of PM₂.₅ sensitivities to the emissions of each pollutant (i.e., SO₂, NOₓ, NH₃, NMVOC, and PM) in the three target regions. The SIA accounts for about 20–50% of PM₂.₅ concentrations in three regions, which is consistent with observations. The PM₂.₅ sensitivities to PM emissions are about the same in various control levels. However, NH₃, SO₂, and NOₓ present significant nonlinear impacts; the PM₂.₅ sensitivities to their emissions get larger when more control efforts are taken, because of the transition between NH₃-rich and NH₃-poor conditions, the transition between NOₓ-limited and VOC-limited for ozone chemistry regimes and other thermodynamic effect and etc. The PM₂.₅ response to NH₃ emissions is comparable with that of SO₂ and NOₓ, and it is larger under higher control levels. Under 50% control level, NH₃, NOₓ, and SO₂ emissions reduce 7.9%, 10.8%, and 10.4% of PM₂.₅ concentrations in NCP; 10.7%, 7.7%, and 8.9% in YRD; 9.9%, 5.2%, and 10.8% in PRD; and 10.7%, 10.2%, and 11.4% in east China.

Nonlinear Impacts of NH₃ Emission on SO₄²⁻ and NO₃⁻ Aerosol

The reaction mechanism of atmospheric chemistry is given in Figure S3. Using the Beijing urban site as an example, the nonlinear response of SO₄²⁻ and NO₃⁻ aerosol concentrations to the emission changes of precursors, is given in Figure 3.

For SO₄²⁻ concentration, the dominating contributor is SO₂ emissions (Figure 3a, c). NH₃ emissions slightly enhance the SO₄²⁻ concentrations under NH₃-poor condition, because NH₃ provides a weak base condition to uptake more SO₂ and also enhances the cloud SO₂ oxidation rate by O₃. But no effects are found under NH₃-rich condition for both January and July (Figure 3c). Lower NOₓ emissions (an emission ratio of 0.2–0.4 in January and 0.7–0.9 in July, higher in summer due to stronger atmospheric oxidation capacity than in winter) and suitable NOₓ/NMVOC ratios benefit SO₄²⁻ generation (Figure 3b, d). The hydroxyl radical is the key reactive species in both homogeneous (SO₂ + OH) or aqueous-phase paths of SO₂⁻ formation. Both NOₓ and NMVOC could be involved in OH removals during the generation of NO₃⁻ and RO₂/HO₂, therefore suitable NOₓ/NMVOC ratios will enhance the generation of ozone, the major source of the hydroxyl radical. In NOₓ-rich conditions, the SO₄²⁻ sensitivity to NOₓ emissions is negative. The results are opposite in NOₓ⁻ poor conditions.

For NO₃⁻ concentration, NOₓ emissions are the dominating contributor. However, NH₃ emissions are very important under NH₃-poor conditions (as shown in Figure 3b), because NH₃ reacts preferentially with H₂SO₄ instead of HNO₃. The sensitivities of NO₃⁻ concentration to NOₓ and NH₃ emissions (under baseline, i.e., emission ratio = 1) are relatively larger in summer than those in winter, because NO₃⁻ is very volatile in the summer (due to high temperature) and, thus, the equilibrium moves dominantly toward the gas-phase HNO₃ instead of particle-phase NH₄NO₃. SO₂ emissions slightly benefit NO₃⁻ formation under NH₃-rich conditions, especially at lower SO₂ emissions level (Figure 3c). This is caused by the thermodynamic effect. The increase of NH₃⁺ and SO₄²⁻ ions will decrease the NH₄NO₃ equilibrium constant, shifting its partitioning toward the particulate phase. However, when NH₃ is insufficient, SO₂ emissions inhibit NO₃⁻ formation due to its competition with NH₃. NMVOC emission slightly contributes NO₃⁻ pollution under NOₓ-rich condition in both January and July, and NOₓ emission slightly inhibits NO₃⁻ formation under NOₓ-rich condition in January (Figure 3d).

Identification of NH₃-Rich/Poor Condition

Indicators for PM chemistry such as the degree of sulfate neutralization (DSN), gas ratio (GR), and adjusted gas ratio (AdjGR) could be used to identify the NH₃-poor, -neutral, or -rich condition, then to
Environmental Science & Technology

Figure 2. PM$_{2.5}$ concentration sensitivity to the stepped control of individual pollutants (PM$_{2.5}$ sensitivity = change ratio of PM$_{2.5}$/change ratio of emission; all values are monthly average in January, April, July, and October in 2005).

Figure 2. PM$_{2.5}$ concentration sensitivity to the stepped control of individual pollutants (PM$_{2.5}$ sensitivity = change ratio of PM$_{2.5}$/change ratio of emission; all values are monthly average in January, April, July, and October in 2005).

Figure 2. PM$_{2.5}$ concentration sensitivity to the stepped control of individual pollutants (PM$_{2.5}$ sensitivity = change ratio of PM$_{2.5}$/change ratio of emission; all values are monthly average in January, April, July, and October in 2005).

determine the sensitivity of NO$_3^-$ to precursors’ emissions.39

Their definitions are given as follows:

$$ DSN = \frac{[NH_4^+] - [NO_3^-]}{[SO_4^{2-}]} \quad (2) $$

$$ GR = \frac{[TA] - 2 \times [TS]}{[TN]} = \frac{([NH_3] + [NH_4^+]) - 2 \times [SO_4^{2-}]}{[NO_3^-] + [HNO_3]} \quad (3) $$

where [TA], [TN], and [TS] are the total molar concentration of ammonia ([NH$_3$] + [NH$_4^+$]), nitrate ([NO$_3^-$] + [HNO$_3$]), and sulfate ([SO$_4^{2-}$]), respectively.

From RSM results, not only the NH$_3$-rich/-poor condition under baseline scenario but also that under certain emission

$$ AdjGR = \frac{[TA] - DSN \times [TS]}{[TN]} = \frac{[NH_3] + [NO_3^-]}{[NO_3^-] + [HNO_3]} \quad (4) $$

where [TA], [TN], and [TS] are the total molar concentration of ammonia ([NH$_3$] + [NH$_4^+$]), nitrate ([NO$_3^-$] + [HNO$_3$]), and sulfate ([SO$_4^{2-}$]), respectively.
control scenarios can be determined. The NH$_3$-poor condition means the total available ammonia (gaseous ammonia + aerosol phase ammonium) is insufficient to charge-balance difference the remaining of other anions and cations, with the result that small perturbations in the ammonia emissions may have a significant effect on particle mass. Based on this principle, we defined an indicator—"Flex Ratio (FR)"—to identify the NH$_3$-poor/-rich condition. As shown in Figure S4, under baseline NO$_x$ emissions (i.e., NO$_x$ emission ratio = 1), along with the decrease of NH$_3$ emission ratio from 2.0 to 0, the NO$_3^-$ slightly increases at first, but it gets sharply increased after the transition point (i.e., Flex Ratio). In the isopleths of NO$_3^-$ response to NO$_x$/NH$_3$ emission changes predicted by RSM, the Flex Ratio is defined as the NH$_3$ emission ratio at the flex NO$_3^-$ concentrations under baseline NO$_x$ emissions (see Figure S4). When the FR is larger than the current NH$_3$ emission ratio (in baseline = 1), the sensitivity of the NO$_3^-$ concentration to NH$_3$ emissions is more than that to NO$_x$ emissions, which indicate NH$_3$-poor condition (see Table S4). In contrast, when the FR is less than 1, the NO$_3^-$ concentration is more sensitive to NO$_x$ emissions instead of NH$_3$ emissions, which indicates a NH$_3$-rich condition, and the value (1/Flex Ratio) reflects the ratio of free NH$_3$ which could neutralize extra nitric acid produced by additional increases of NO$_x$ emissions.

The spatial distributions of NO$_3^-$ concentrations and GR are given in Figure S5. NO$_3^-$ concentrations are found higher in January and lower in July, since higher temperature benefits NO$_3^-$ evaporation and stronger atmospheric oxidation capacity favors converting S(IV) to S(VI), then enhancing the NH$_3$ competition between SO$_4^{2-}$ and NO$_3^-$ in July. Values of GR indicate NH$_3$-rich, neutral, and poor conditions. The spatial distributions of GR value suggest that most of the polluted areas are located in NH$_3$-rich conditions in all months (i.e., GR > 1). The FR over east China is shown in Figure 4. The FR derived from RSM gives consistent results, and the FR values in heavy NO$_3^-$ pollution areas are mainly below 0.8. On an average annual basis, NCP and YRD are mainly located in NH$_3$-rich conditions (FR is 0.6–0.7 and 0.8–1.0, respectively), therefore NO$_3^-$ is more sensitive to NO$_x$ emissions, but PRD is located in NH$_3$-poor conditions (FR is 1.0–1.5) and NO$_3^-$ in PRD is more sensitive to NH$_3$ emissions. The FR is around 0.8 in high NO$_3^-$ areas, indicating NH$_3$ is sufficiently abundant to satisfy an additional 25% (= 1/0.8) increase of NO$_x$ emissions to generate NO$_3^-$. Impacts of NH$_3$ Emission Increase on SO$_4^{2-}$ and NO$_3^-$ Aerosols. Previous studies on the emission trends in China indicate the NH$_3$ emissions have been growing along with other precursors. According to these results, the emission trends for each pollutant during 1990–2005 could be fitted by parametrized quadratic functions, as shown in Figure 5a. NO$_x$ is the fastest growing pollutant, increasing over 100% from 1990 to 2005. SO$_2$ emissions have increased by 30% during the same period. The NH$_3$ and NMVOC emissions in 2005 are about 90% increased from that in 1990. The growth trends of SO$_4^{2-}$ and NO$_3^-$ concentrations driven by the increases of the emissions during 1990–2005 have been calculated by RSM. The results are given in Figure 5.
Environmental Science & Technology

Artificial scenario effects the impacts of all five pollutants emission simultaneous changes with \(\text{SO}_4^{2-}/C_0 \) and \(\text{NO}_3^-/C_0 \) concentration. In addition, a series of hypothetical scenarios has been conducted to evaluate the impacts of each pollutant emission change on \(\text{SO}_4^{2-}/C_0 \) and \(\text{NO}_3^-/C_0 \) concentrations. In each hypothetical scenario, one pollutant is held at the 1990 level (i.e., no increases during 1990–2005) and the rest are kept the same as the base scenario. In the baseline, the \(\text{NO}_3^-/C_0 \) and \(\text{SO}_4^{2-}/C_0 \) concentrations increase by 150% and 20%, respectively. It is obvious that the growth of \(\text{NO}_x \) and \(\text{SO}_2 \) emissions are the dominant factor to enhance \(\text{NO}_3^- \) and \(\text{SO}_4^{2-} \), respectively. Significant impacts could also be seen from the growth of \(\text{NH}_3 \) emissions. About 50–60% increases of \(\text{NO}_3^-/C_0 \) and \(\text{SO}_4^{2-}/C_0 \) are caused by the growth of \(\text{NH}_3 \) emissions. The growths of NMVOC and \(\text{SO}_2 \) emissions have no significant impacts on \(\text{NO}_3^-/C_0 \), while the growth of \(\text{NO}_x \) has negative impacts on \(\text{SO}_4^{2-} \) formation, possibly due to its influence on \(\bullet \text{OH} \) as discussed in the previous section, especially during wintertime.

Emissions of air pollutants and their projections have been changing significantly in recent years. The satellite data have

Figure 4. Flex ratio in January, April, July, and October, 2005 (FR < 1 suggests \(\text{NH}_3 \)-rich condition; FR > 1 suggests \(\text{NH}_3 \)-poor condition).

Figure 5. Historical and future growth of emissions impacts on \(\text{SO}_4^{2-} \) and \(\text{NO}_3^- \) (average of 4 months, in east China).
shown that NO₂ increase in East Asia has been growing much faster than previous projections. Therefore, it is important to understand how China’s air pollutant emission change will affect the regional air quality in the future. Alternative scenarios for future SO₂, NOₓ, and NMVOC emissions 18 were developed using forecasts of energy consumption and emission control strategies based on emissions in 2005, and on recent development plans for key industries in China, as shown in Figure Sb and c. In the reference scenario, which is based on the current control regulations and implementation status, i.e., REF scenario, the emissions of all pollutants are increasing from 2005 to 2030. In 2030, NO₃⁻ and SO₄²⁻ will increase significantly, by 50% and 10%, respectively. In 2030, the NH₃ emissions will increase by 20%, which may cause 15% and 4% increase of NO₃⁻ and SO₄²⁻, respectively. In the policy scenario, which is based on the improvement of energy efficiencies and strict environmental legislation, i.e., PC2 scenario, though NOₓ emissions will be better controlled in 2030, the increase of NH₃ emissions will enhance NO₃⁻ by 10%. The decrease of SO₂ emissions leads to significant reduction of SO₄²⁻, while the growth of NH₃ will slightly improve SO₄²⁻ by 2%. This implies future potential control of NH₃ is important, especially for NO₃⁻ reduction.

NH₃ Impacts on the Acidity of Aerosols. The major concern about the potential negative impacts of NH₃ control is the enhancement of aerosol acidity. In this study, we select the DSN as the indicator of the acidity of aerosols. When the DSN is less than 2, SO₄²⁻ is insufficiently neutralized and the aerosol is more likely to be acid. The NH₃ emissions level resulting in DSN less than 2 are calculated from RSM. Its spatial distributions over four months are given in Figure S6. High NH₃ emissions are beneficial to the formation of NO₃⁻. Over the polluted areas such as NCP and YRD which have the highest NH₃ emission intensity, the values are 0.8–1 in January, April, and October, but higher than 1 in July. This indicates the acidity of aerosols is more sensitive to NH₃ emissions in summer than in other seasons, mainly because of the high evaporation of NO₃⁻ in summer and the stronger atmospheric oxidation capacity which converts S(IV) to S(VI) and enhances the NH₃ competition between SO₄²⁻ and NO₃⁻ in July. Therefore, the acidity of aerosols is more sensitive to NH₃ emissions in the summer than in other seasons.

ASSOCIATED CONTENT

Supporting Information. This information is available free of charge via the Internet at http://pubs.acs.org/.

AUTHOR INFORMATION

Corresponding Author

*Phone: +86-10-62771466; fax: +86-10-62773650; e-mail: shxwang@tsinghua.edu.cn.

ACKNOWLEDGMENT

The study was financially supported by Natural Science Foundation of China (20921140409), MEP’s Special Funds for Research on Public Welfare (201009001), and the U.S. EPA. We thank Dr. Thomas J. Santner and Dr. Gang Han at The Ohio State University for their help using the MiperK program and Satoru Chatani from Toyota Central R&D Laboratories for aid with emission processing. We appreciate that Dr. Chuck Freed helped improve the language of the paper.

REFERENCES

